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Abstract—Accurate identification of an uncertain underwater
environment is one of the challenges of underwater robotics.
Autonomous Underwater Vehicle (AUV) needs to understand
its environment accurately to achieve autonomous tasks. The
method proposed in this paper is a real-time automatic target
recognition based on Side Scan Sonar images to detect and
localize a harbor’s wall. This paper explains real-time Side Scan
Sonar image generation and compares three Deep Learning ob-
ject detection algorithms (YOLOv5, YOLOv5-TR, and YOLOX)
using transfer learning. The YOLOv5-TR algorithm has the
most accurate detection with 99% during training, whereas the
YOLOX provides the best accuracy of 91.3% for a recorded
survey detection. The YOLOX algorithm realizes the flow chart
validation’s real-time detection and target localization.

I. INTRODUCTION

The maritime economy and infrastructures have expanded
in the last few years, which provides interest in maritime
technology to protect and keep contributing to this area.
Autonomous Underwater Vehicles (AUV) provide submarine
information (features, infrastructures), making us aware of this
environment. Considering the visible underwater uncertainty,
the camera’s utility is only used for specific tasks close to the
bottom, or the target. The underwater environment is not well
suited for optical images. These images are often dark and
blurred, which does not provide great accuracy for object de-
tection. However, acoustic sonar sensors are particularly well
suited for underwater surveys [21]. They provide high range
detection and are not influenced by the lack of luminosity. Side
Scan Sonar (SSS) is the most common sonar used for seabed
inspection and object detection. Through its two transducers
localized on each part of the AUV, it scans a wide area and out-
comes with a high-resolution sonar image of the seabed. Those
images are mainly used to detect objects and features localized
on the seabed. However, those images require high expertise
in the maritime environment to detect and annotate the area
of interest. With the improvement of Artificial Intelligence
(AI) and specifically Deep Learning (DL) for object detection,
several algorithms have started to be used in the last few years
to process the data after the AUV maneuver. This technical
improvement allows AUV users to be more independent in
their data processing. Recent advances in pattern recognition
and Machine Learning (ML) have greatly improved feature
extraction from images. Driven by the impulse of the deep

neural network, which gives breakthrough results for different
AI challenges such as Natural Language Processing (NLP)
[12], autonomous driving [8], or computational vision [14].
With the breakthrough result of AlexNet in 2012 [9], based
on DL classification from images dataset, DL algorithm cre-
ation, and implementation have known a massive increase for
computational vision fields such as classification [10], object
detection [14] and image segmentation [2]. As in many fields,
the DL algorithms for object detection gives excellent results
for underwater images, especially sonar images. In this paper,
we will compare the influence of 3 different DL algorithms for
real-time object detection based on Side Scan Sonar images.
Those algorithms are the YOLOv5 [18], the YOLOv5-TR [3],
and the YOLOX [14]. This paper will compare the results of
those three algorithms in real-time constraints for Side Scan
Sonar implemented into an AUV. This paper is structured
as follows: the section II introduces the current state of the
art for real-time object detection, the section III explains
the methodology used for real-time SSS images processing
and real-time object detection, section IV explains in detail
the sonar samples treatment and the sonar image generation,
section V introduces the dataset created for this paper, the
section VI explains the three algorithms (YOLOV5, YOLOV5-
TR, YOLOX) training and result for offline experiments, and
finally, the section VIII is the implementation of the algorithm
for real-time detection using real-time processed sonar images.

II. STATE OF THE ART

One of the main issue in object detection algorithm is to find
the best balance between accuracy and efficiency using one
or two stage detectors. R-CNN [11], Faster R-CNN [1], and
Features Pyramid Network (FPN) are the current two-stages
algorithms used for Side Scan Sonar images. Since 2018, and
the advent of the one-stage detector YOLO (You Look Only
Once) [15] algorithm, which was one the best balance between
efficiency and accuracy; several updates of this algorithm
has been proposed with YOLOv3, YOLOv4, YOLOv5. To
overcome the shortcomings of the traditional manual detection
of underwater targets in SSS images, a real-time automatic
target recognition (ATR) method has been proposed in several
papers [2], [4] and [1]. The paper [1] compares three different
types of real-time ATR algorithms (the YOLOv3, YOLOv5,



and the Faster RCNN) for pipeline inspection. The paper’s
outcome gives the same accuracy (97.62%) for the YOLOv5
and Faster RCNN models. However, the YOLOv5 algorithm is
62 times faster than the Faster RCNN, a tremendous advantage
for a real-time utility. YOLOv5 is the fifth version of the
YOLO family and is one of the most accurate and efficient
in the States Of the Art (SOA) for object detection. The
YOLOv5-TR [3] has the same architecture as the previous
one; however, it is implemented with a Transformer module
at the end of its backbone. Transformers have been a cutting-
edge method in the NLP area, implementing a Multi-Head
Attention module. ”Attention” can be defined ”as mapping
query and a set of key-value pairs to an output, where
the query, keys, values, and output are all the vectors”[6].
Implementing this method for NLP processing has been known
as a significant improvement and outperformed the SOA. Due
to its outperforming results, the transformer method has started
to be implemented for computational vision by introducing the
DEtection TRansformers (DETR) method for object detection
[7], followed by DEit [16] and Vit[5]. In the YOLOv5-TR
algorithm [3], the CNN YOLOv5 architecture is implemented
by a transformer module with 4 Multi Head Self-Attention
(MHSA) [6] between the backbone and the neck of the
YOLOv5 algorithm. This algorithm is explained in detail in
the section VI.
The YOLOX [14] algorithm is a new improvement of the
YOLO series and tackles the current SOA in object detection.
This algorithm uses YOLOv3 with the Darknet53 backbone
and a Spatial Pyramid Pooling(SPP) layer as a baseline and
uses Features Pyramid Network (FPN) and decoupled head for
classification and regression. The YOLOX aims to implement
the anchor-free model into the YOLO series.

III. METHODOLOGY

The methodology proposed and followed for this paper is
depicted in Figure 1. This method shows the pipeline followed
from the dataset creation to the implementation in real-time
of the automatic target detection based on SSS.

Figure 1: Pipeline Methodology

The implementation of DL algorithm requires a reliable
and well-annotated dataset. However, it is complicated to
find an open-source dataset in the underwater area. The lack
of a dataset restrains the opportunity to train ML models
with a massive amount of data. The first obligation that we
have to do is to collect underwater data. For this task, we
have used the Light Autonomous Underwater Vehicle (LAUV)
[17] from Oceans-Scan MST company, set up with the SSS

Klein3500. The maneuver took place at the Matosinhos harbor
in Portugal, where different objects were detected. After the
data collection, the data was displayed on the Neptus software
[13], an AUV maneuver supervisor that allows replaying
missions and displaying sensor information and visualization
through its interface. Neptune provides crop tools to crop
regions of interest or target objects into its replay data tool.
This part aims to identify and separate targets and store them
into a first dataset. Thanks to Neptune, this dataset can be
extracted for the annotation process. The annotation process
can require a maritime expert to identify the target accurately.
For this paper, we are focusing on wall detection, which is
a target that can be easily detected by non-expert maritime
fields, as we will see in the section IV. Creating an annotated
dataset allowed us to train the DL algorithms to use for this
paper: the YOLOv5, YOLOv5-TR, and the YOLOX. The
algorithm training and offline results are explained in detail
in section IV. Regarding the results, the chapter ends with the
approbation of one algorithm to implement in real-time object
detection. This real-time object detection process requires real-
time image generation allowing the DL algorithm to work in
real-time. This process is focused on the real-time collection
of SSS data and the treatments of the samples. Thanks to
the SSS treatment, accurate and high qualities SSS images
are generated. This process is detailed in the next chapter.
The generation of real-time SSS images will allow the DL
algorithm chosen in section VII to be tested in real-time. Dune
[13], embedded software in charge of the control and sensors
onboard the vehicle, will be used to test the real-time survey.
The methodology proposed for Automatic Target Recognition
is shown in Figure 2.

Figure 2: Implementation Methodology

This flow chart gives an overview of the real-time object
detection and localization process, which is the outcome of
this paper. This flow chart is divided into two main parts,
which are the data collection with image generation and the
second one is the object detection with target localization.

IV. SIDE SCAN SONAR TREATMENT

Side Scan Sonar sensor provides waterfall images updated
by a continuous acoustic signal. This signal gives seabed
intensities values and is usually quantified into 8, 32, or 64
bits ranges, meaning that each pixel value is quantified in one
of those bit ranges. Pre-processing the SSS signal means re-
quantified this range into an 8bits range value generating a 0-
255 color map from the SSS value and generating comprehen-
sible color images. The 0-255 range can be adjusted regarding
the lowest and highest values recorded from the SSS. However,



this pre-processing part is not enough to generate usable SSS
images, as shown in Figure 3. Furthermore, the Klein 3500
sonar gives 2 different frequencies: 450KHz and 900KHz. For
this paper we will be focus on the high frequency, which gives
better accuracy for object detection.

Figure 3: Side Scan Sonar Image

Some sonar signal treatments have to be realized. Acoustic
waves spread and absorb losses when traveling through sea-
water. This loss is characterized by an information difference
between the detection close to the transducer and the one
far from it. The methodology used to correct and minimize
this effect is called the Time Variable Gain (TVG), and the
mathematics formula is given by equation 1:

TL = αR+ 20logR = α(vt) + 20log(vt) (1)

Where TL is the transmission loss, R is the spreading
range expressed as propagation time t multiplied by sound
velocity v, and α is the attenuation coefficient. The TVG
result is normalized between 0 and 255, ensuring that the TVG
normalization does not overpass the quantified SSS range.

However, even with the implementation of TVG and
normalization, the generated images are not well suited
for recognize object on it. Indeed, each pixel value has to
be interpolated with its neighborhood value pixel, which
harmonizes the final image result, as shown in Figure 4.

Figure 4: SSS Image with TVG, Normalization and
Interpolation

This section will describe the algorithms used under this
work focused on the generation of usable SSS images in real-
time data collection. The data used for the last section of
this paper provides from a survey done with a LAUV from
Klein3500(SSS), and the real-time SSS values are replayed on
the Dune embedded software. Three new lines are generated
for each SSS ping, creating a new image that pushes out the
last three lines of the images. This process is realized while
the SSS is activated.

V. DATASET

The lack of an open-source underwater dataset is a real
problem for training DL algorithms for underwater object
detection. This constraint obliges DL researchers in the un-
derwater field to do their own surveys to collect their data.
For this paper, we have used the LAUV from OceanScan-MST
company and the Klein3500 to collect SSS images. The survey
aimed to collect SSS images of the harbor’s walls. Those wall
data will be implemented into the algorithms to realize wall
detection and localization. The dataset has been built with two
different classes: wall and noWall.

Figure 5: Dataset

The amount of wall and noWall data is shown on the Table
1.

Table 1: Dataset Information

Wall noWall Total
243 386 629

As we know, the amount of data is essential for a DL
algorithm training process. DL algorithms are known to be
data-driven and are affected by the amount of data. Thanks
to several AUV maneuvers to collect wall and noWall data,
those are only about 629 with 243 walls and 386 for noWall.
To bypass the problem of the low amount of data, a technique
called Data Augmentation is used to increase the dataset. Our
dataset has been augmented using the clockwise and non-
clockwise rotation, which increased the number of data. The
final dataset is shown in table 2.

Table 2: Dataset Augmentation Information

Wall noWall Total
443 685 1128

To maintain a good distribution between the two classes,
they have been mixed up and split into three groups: training,
testing, and validation. The ratio used to split them is 83% for
training, 11% for validation, and 6% for testing.

VI. ALGORITHMS

This section describes in detail the three DL object detection
algorithms use for SSS wall detection.

A. YOLOv5 Algorithm

YOLOv5 [18] algorithm is the fifth version of the YOLO
family which stand for ”You Look Only Once.” YOLO is an
object detection algorithm released in 2015 [15], has been
adopted as a breakthrough result for real-time object detection



giving a good balance between accuracy and efficiency. The
algorithm using CNN structure, done as a regression problem,
provides the class probabilities of the detected images and
outcomes with bounding class probabilities. The whole process
is realized in a single forward propagation. The YOLOv5’s
structure is shown in Figure 6.

Figure 6: YOLOv5 Structure [18]

The model is split into three different parts: the backbone,
the neck, and the output, which is called the model head.
Model Backbone is mainly used to extract essential features
from the input image. In YOLOv5, the Cross Stage Partial
(CSP) Networks are used as a backbone to extract rich,
informative features from an input image. The model neck
is primarily used to generate models that generalize well in
object scaling. The model Head is mainly used to perform
the final detection part. It applies anchor boxes on features
and generates final output vectors with class probabilities,
objectness scores, and bounding boxes. In our case, the output
will be bounding boxes with an accuracy percentage.

B. YOLOv5-TR Algorithm

Since the breakthrough results of the Transformers in the
NLP area and the promising results of its implementation for
computational vision through the End-to-End Object Detection
with Transformers (DETR) [7], several CNN combined with
Transformer module have been developed. The implementa-
tion of the Transformer module is localized at the end of the
YOLOv5’s Backbone, which is used to improve the quality
of the input picture to improve the detection done by the
Neck part. The Transformer module used for this architecture
is shown in Figure 7. The Multi-Head Self Attention (MHSA)
[6] aims to calculate the relation among pixels to make the
algorithm more aware of the information on the picture. The
implementation of the module helps to ”take more Attention.”
Using a principle of query vector Q, key vector K, and value
vector V, the MHSA used for this algorithm has four heads of
Attention followed by a linear transformation.

Figure 7: Multi-Head Self Attention [3]

C. YOLOX Algorithm

YOLOX algorithm has been proposed in 2021 [14]. This
method took the YOLOv3-Darknet model as a baseline and
improved it by implementing a decoupled head method sepa-
rating the regression and annotation tasks.

Figure 8: YOLOX Structure [14]

The Figure 8 shows YOLOX architecture, where for each
FPN feature, a 1x1 Conv layer is used to reduce the feature
channel to 256 and then add two different branches for
classification and regression. The last significant advances in
object detection are anchor-free detectors, advanced label as-
signment strategies, and end-to-end detectors. However, those
improvements have not yet been implemented into the YOLO
series, which this method is proposing. The single-stage object
detection algorithms (e.g., YOLO) refine to the final detection
location and are typically defined as the grid on the image
coordinates at all possible locations, with different scales and
aspect ratios.

VII. TRAINING

This section focuses on the algorithms training and the
comparison of the offline results. This part will outcome
with the chosen algorithm for the real-time target detection
tasks. First of all, all the algorithms have been implemented
by pre-trained weights, which come from the well known
COCO open-source dataset [20]. This method, called transfer
learning, is a standard method used to pre-trained DL models



with a massive amount of data which improves the training
accuracy and efficiency of the model. This method can avoid
the underwater dataset issue due to its low amount of data.
The training has been processed with a single GPU Geforce
RTX 3070 Ti for all the algorithms.

Figure 9: Training

The result shown in Figure 9 has been realized with a
batch size of 12 for all the algorithms. The YOLOv5 and
YOLOv5-TR algorithms have the best training behavior during
the first epochs, which are already over 0.9% after 10 epochs.
However, the YOLOX algorithm succeeds in reaching 0.9%
at the 48th epoch and increases smoothly until the end of the
training.

Table 3: Result Training

Algorithm Best mAP 0.50 (%) num Epoch
YOLOv5 98.9 128

YOLOv5 TR 99 266
YOLOX 96.2 218

The result shows that the YOLOv5-TR algorithm is the most
accurate after training with 99%, followed by the YOLOv5
with 98.9% and the YOLOX with 96.2%. This training gives
an advantage to the YOLOv5 algorithm implemented with the
transformer module.

Regarding the training results, which are close to each
other, an offline algorithm comparison is provided to get the
best algorithm for object detection through SSS images.
The offline test consists of implementing SSS, recorded on
Neptus and processed through a video object detection, with
the algorithms trained. The SSS data has been taken in Porto’s
harbor but has not been used as training data, ensuring that
the algorithms will not detect data that they have been trained
with. The test compares the trained algorithm on a wall SSS
data recorded offline. The comparison outcome will give the
most suited algorithm for real-time wall detection. The data
is about 14min of AUV survey, where 11.50min are data
containing at least one wall. Table 4 shows the result.

Table 4: SSS offline validation

Algorithm Wall Detected(min) Total FPS
YOLOv5 6.32 54.95% 90

YOLOv5 TR 10 86.95% 133
YOLOX 10.50 91.3% 125

The first version of the YOLOv5 algorithm is outperformed
by its transformer improvement and the YOLOX, a YOLO3
improvement based on a free anchor. The most accurate
algorithm for SSS detection is the YOLOX with 91.3%
wall detected, which is almost 5% more accurate than the
YOLOV5-TR. During the whole detection process, on average,
the bounding box square was closer to the target with the
YOLOX, which gives a better IOU value of the ground
truth with a better prediction score. Regarding the frame per
second (FPS) parameter, the YOLOv5-TR is the most efficient,
with 133 FPS, 8 more than YOLOX, and 43 better than
YOLOv5. An average AUV velocity during a survey is about
a few meters per second, and the real-time SSS processing is
relatively slow, which does not require a high FPS value to
make the algorithm detect walls. However, the FPS acquired
changes depend on the software and hardware used for the
detection, which should be considered when the algorithm
is used on an embedded vehicle. Thanks to this result, the
algorithm chosen for the real-time wall detection based on
SSS is the YOLOX.

VIII. RESULTS

The section aims to use the algorithm chosen in the last sec-
tion for real-time detection and localization of the target. This
task would be helpful for several tasks, such as target/features
detection on the seabed. In this paper, the algorithms have been
trained for wall detection. This task is processed using Dune
and Neptus software to create a real-time environment. Neptus
replays a mission, and Dune receives the AUV information
through the IMC protocol. Thanks to the SSS Treatment
section, images are generated while the mission is replayed,
and the algorithm processes each image to detect a wall. A
bounding box is displayed on the image for each wall detected.
Regarding the SSS characteristic, the information is about 75
meters on each side of the AUV. However, several parameters
of the images have to be filtered to make the detection more
efficient. First, below the AUV, a region called Nadir Gap
is always displayed on SSS images. It refers to the lack of
information region between the two transducers, and its size
varies according to the distance from the AUV to the seabed.
This region is displayed as a high luminosity straight line
between two black straight lines. This representation on SSS
images may disturb the algorithm because of its similarity
with a wall. The Nadir Gap region is filtered from the image
to reduce the algorithm disturbance. During the actual time
of SSS image generation, some noise has been noticed for
each transducer at the end of their range which is about 1
meter per each, and has also been filtered. Regarding those
two image modifications, the range detection is now over
145.5 meters reducing the range detection to 4.5 meters. This
new parameter is primordial to localizing the wall on the
image, reducing the number of pixels over each line from 1563
to 1518. Each range meter is characterized by 10.42 pixels.
Concerning these values, localizing a wall on the image from
the AUV is possible. Thus, while the AUV maneuvered, the
robot received wall position messages containing the target’s



side (port/starboard) and its distance from the AUV, as shown
in Figure 10.

Figure 10: Wall Detection and Localization

IX. CONCLUSION

This paper aims to detect and localize walls in real-time
through SSS images. It clusters several essential topics: the
real-time SSS image generation, the most suitable Object
Detection algorithm, and their implementation into a real-time
AUV survey scenario. Since its release in 2020, the YOLOv5
has known several improvements, and the YOLOv5-TR is
one of its most successful. This improvement is characterized
by implementing a transformer module between its backbone
and its neck. This module attempts to improve the accuracy
of the detection by improving the image quality. Its training
accuracy is about 99%, and its detection percentage on the
offline validation is about 86.9%, which outperforms the
first version of the YOLOv5 by 32%. In 2021, the YOLOX
algorithm was released and proclaimed a better performance
than the YOLO family based on a free anchor detection.
This paper compared it with the YOLOv5 and its transformer
improvement, the YOLOv5-TR. Its best mAP 0.50 is the
lowest with 96.2%. However, it gives the best accuracy during
the offline validation with a 91.3% of wall detected. This
algorithm has been chosen for the real-time wall detection
based on SSS images realized through Dune and Neptus
software to simulate a real-time AUV survey. Thanks to the
YOLOX bounding box, the outcome is the localization in
real-time of the walls detected during the maneuver. Several
future works can be conducted to improve this paper. As seen
in the algorithm comparison, transformer modules improve
object detection accuracy. For future works, this module
could be implemented into the YOLOX algorithm [19],
which could be an improvement for small object detection
for underwater SSS images. This method can be applied
for pipeline following regarding the proposed wall detection
and localization. Another work should focus on the detected
target’s GPS absolute localization coordinate (long/lat).
Indeed, for the moment, the localization message exchanges
the position side and its distance from the AUV, which is
accurate for a wall localization. However, better localization
accuracy should be provided for a different target (e.g.,
mine). This localization improvement would give a better
understanding of the AUV’s environment.
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