
A Collision Avoidance Method
for Autonomous Underwater Vehicles
Based on Long Short-Term Memories

László Antal1(B), Martin Aubard2, Erika Ábrahám1, Ana Madureira3,
Lúıs Madureira2, Maria Costa2, José Pinto2, and Renato Campos2

1 RWTH Aachen University, Aachen, Germany
{antal,abraham}@cs.rwth-aachen.de

2 OceanScan - Marine Systems and Technology, Lda., Porto, Portugal
{maubard,lmad,mariacosta,zepinto,rcampos}@oceanscan-mst.com

3 Institute of Engineering, Polytechnic of Porto, Porto, Portugal
amd@isep.ipp.pt

Abstract. Over the past decades, underwater robotics has enjoyed
growing popularity and relevance. While performing a mission, one cru-
cial task for Autonomous Underwater Vehicles (AUVs) is bottom track-
ing, which should keep a constant distance from the seabed. Since static
obstacles like walls, rocks, or shipwrecks can lie on the sea bottom, bot-
tom tracking needs to be extended with obstacle avoidance. As AUVs
face a wide range of uncertainties, implementing these essential opera-
tions is still challenging.

A simple rule-based control method has been proposed in [7] to real-
ize obstacle avoidance. In this work, we propose an alternative AI-based
control method using a Long Short-Term Memory network. We compare
the performance of both methods using real-world data as well as via a
simulator.

Keywords: Autonomous underwater vehicles · Obstacle avoidance ·
Rule-based control · AI-based control · Long short-term memories

1 Introduction

Autonomous Underwater Vehicles (AUVs) face a wide range of complex tasks in
the underwater environment. Two of these tasks are bottom tracking and obstacle
avoidance. Bottom tracking means that an underwater vehicle needs to maintain
a distance to the seafloor as constant as possible. It helps the AUV to gather
different types of sensor data more reliably (e.g., side-scan sonars, multibeam
sonars, and camera images). However, since the seafloor’s surface is uneven and
it may happen that some obstacles (rocks, walls, or other static objects) are lying
underneath, bottom tracking needs to be extended with obstacle avoidance.

In this paper, we consider Light Autonomous Underwater Vehicles (LAUVs)
with restricted sensor information. The starting point for our work is a rule-based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Abraham et al. (Eds.): IBICA 2022, LNNS 649, pp. 448–457, 2023.
https://doi.org/10.1007/978-3-031-27499-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27499-2_42&domain=pdf
https://doi.org/10.1007/978-3-031-27499-2_42


Collision Avoidance Using LSTMs 449

control mechanism [7], which is the method currently running on LAUVs. The
problem with this method is that it is sensible to noise, therefore, the decisions
are not always reliable. In order to provide more robust decisions, we propose as
an alternative approach an AI-based control method. We comparatively evaluate
both approaches using the data gathered from real-time missions as well as using
a simulator.

The rest of this paper is structured as follows. We discuss related work in
Sect. 2 before we present the rule-based and the AI-based controllers in Sects. 3
and 4, respectively. In Sect. 5, we show and analyze the results of our experi-
ments. Finally, Sect. 6 summarizes this work and lists some of the aspects con-
cerned by future work.

2 Related Work

While submerged, an Autonomous Underwater Vehicle (AUV) can not commu-
nicate and be controlled by an operator. Thus, the AUV needs to understand its
environment to act accordingly. To understand its environment, the AUV uses
different types of sensors that provide information about the distance from the
bottom (altitude), the surface (depth), and the front of the AUV. Most AUVs
use multibeam echo sounder to detect objects in front of the AUV [15]; multi-
beam provides 2D horizontal information about the potential object detected.
The AUV can find a safe horizontal path by processing the data to avoid the
possible object [4].

In this work, we consider Light Autonomous Underwater Vehicles (LAUV)
[1], which use a single-beam echo sounder. This sonar gives a single distance
value from the AUV to the object and does not provide any information about
the potential safety horizontal path to avoid it. In [3], the authors propose an
intelligent single-beam echo sounder to avoid collisions using hybrid automata
modeling. As explained later in Sect. 4, our novel AI-based controller should
improve obstacle avoidance and bottom tracking from [7], where the control
depends on the system’s current state, in contrast to our AI-based controller,
which exploits also information from the past (time series).

Machine Learning (ML) enjoys growing attraction in many fields. Computer
vision based on ML has achieved great success in several tasks, such as classifi-
cation [8,12], object detection [9], and segmentation [9]. These techniques have
also been implemented into robots and AUVs [2] to improve the knowledge of
the robot about its environment. Techniques such as Long-Short Term Mem-
ory (LSTM) [5] and Recurrent Neural Networks (RNN) [6] provide an accurate
prediction based on time series and sequential learning, which is widely used in
speech recognition and machine translation. Several works have been conducted
to predict a robot’s position or behavior based on these ML time series methods.
In [11], the authors propose an RNN method to predict the relative horizontal
velocities of an AUV using data from an Inertial Measurement Unit (IMU),
pressure sensor, and control inputs for dead-reckoning navigation. Thanks to
the promising results based on the RNN implementation into AUV navigation,



450 L. Antal et al.

the work [16] proposed a deep framework called NavNet by taking AUV navi-
gation as a deep sequential learning problem. However, a typical RNN can face
many challenges due to its limitations in memorizing long data sequences, which
can affect the past time window used to predict the AUV behavior. The LSTM
method, based on long and short-term memory, outperforms the RNN charac-
teristic [13]. In [14], the authors implement an LTSM-based Dead Reckoning
approach to estimate the surge and sway body-fixed frame velocities when the
AUV is submerged.

3 Rule-based Control

Fig. 1. Visualization of the sensor mea-
surements considered in [7].

Fig. 2. The corresponding finite state
machine of the method.

In order to tackle the obstacle-avoidance problem, the authors of [7] implement
a very simple, yet very effective, rule-based approach. This method works in a
reactive way, i.e., at every control cycle (timestamp), it considers the current
measurements from specific sensors, and using simple trigonometry, it calculates
the steepness of the sea bottom. The sensor values taken into consideration are
as follows (see Fig. 1 for further details):

1. Depth measurement d: the vertical distance of the AUV to the water surface
obtained using the depth sensor.

2. Altitude measurement l: the vertical distance of the AUV to the sea bottom,
obtained using the multibeam DVL sensor.

3. Forward distance measurement f : the distance to a detected object in the
facing direction of the AUV. These values are provided by a single-beam echo
sounder sensor, considering a non-zero aperture β of the beam (see Fig. 1).

Based on these three measurements coming from the sensors, the method
calculates the steepness α of the sea bottom, and it tries to adapt the pitch



Collision Avoidance Using LSTMs 451

Fig. 3. Illustration of the noise in sensor measurements during a real-world mission.
The altitude and depth values coming from the DVL and depth sensors are relatively
robust, but the forward distance measurements of the echo sounder are very noisy and,
therefore, unsuitable for reactive obstacle avoidance.

using a finite state machine (see Fig. 2) with three states: tracking (when the
AUV tries to maintain constant altitude), climbing (when the seafloor is too
steep and the vehicle is pitching up), avoiding (when the distance to the object
or to the seafloor is too short and the AUV stops the thruster). If the vehicle is
in the avoiding state, since the thruster is stopped, the buoyancy pulls the AUV
upward until the obstacle in front “disappears” from the echo sounder’s field of
view. When that happens, the vehicle goes back to the tracking state.

This simple rule-based control can already fulfill the bottom-tracking task,
but it has some limitations. (i) Due to the imprecise, noisy aspect of the measured
sensor values, the method lacks robustness in some cases. In order to get an
impression, Fig. 3 shows the sensor measurements during a real mission made by
the OceanScan MST company with a LAUV at Matosinhos harbor, Portugal.
(ii) This controller considers only the current sensor values and ignores the past
time frame. (iii) Finally, the rules operate with hard pre-defined threshold values
(αsafe, lsafe, fsafe), though it is possible that for different AUVs or different
environments, fine-tuning of the threshold values would be necessary.

4 AI-based Control

To solve the problems mentioned in Sect. 3, we propose a machine-learning-based
approach. As one subclass of recurrent neural networks, Long Short-Term Mem-
ories (LSTM) can handle well time-series data and long-term time dependencies
[5]. The idea is to take fixed-length time windows containing the consecutive
sensor measurements from the near past and use time-series classification.

Our aim is to learn for a given AUV time series the correct maneuver, which
is one of the AUV states tracking, climbing, and avoiding extended with two



452 L. Antal et al.

Fig. 4. The proposed pipeline to gather, preprocess and label training data from the
log files of real missions and to train the neural network controller.

auxiliary states unsteady and surfaced. The unsteady state is triggered when the
available data is too noisy and, therefore, we cannot make a reliable decision;
in this case, continuing the previous maneuver or trying to stabilize the AUV
would be a proper action. The surfaced state is triggered when the vehicle is on
the surface. The reason why it is necessary to distinguish this state is that the
echo sounder sensor does not work on the surface. Thus, we do not have any
information about a potential obstacle in front of the AUV, so a different type
of control is needed.

The LSTM network should output the state that the AUV should enter
in order to circumvent collisions. We expect that the model learns to make
reliable predictions even when the data is noisy. Furthermore, we expect it also
to generalize better to different settings (i.e., different AUVs or environments)
than the original rule-based approach [7].

To train the LSTM, first, we need to acquire the necessary training, validation
and test data. This process happens in three steps, which we visualize in Fig. 4.
The steps involved in the pipeline bring up the following essential questions that
we answer partly in this section and partly in Sect. 5.

The first question is how we can produce the time windows containing the
sensor measurements coupled with the correct classification label. Since gener-
ating data from simulation would not result in realistic scenarios, we considered
log files of real missions in this paper. These missions were executed by the
OceanScan MST company using a LAUV. Using the log files, we extracted the
necessary sensor data in CSV format from Neptus [10], which is the command
and monitor software for the LAUV.

Secondly, each time series data gathered from the log files needs to be labeled
with a suitable output that defines one of the five states that need to be activated
in order to avoid a collision. Manual labeling would not be feasible since it
takes a lot of time and effort, and the result may not be as precise as we want.
Consequently, we developed an automatic method for labeling the time-series
data. We describe this method in Sect. 4.1.

Finally, we train an LSTM network using the automatically labeled training
data. We describe the parameter settings for the training process in Sect. 5.



Collision Avoidance Using LSTMs 453

Fig. 5. Visualization of the automatic labeling method applied for the same mission
as the one shown in Fig. 3. The subplots Echo sounder value, Rotor speed, and DVL-
filtered and depth value are the corresponding plots for the relevant sensor values. The
CLIMBING/AVOIDING state triggers are the noise gates applied on the sensor values
with a different attack (red line) or release time (green line). Lastly, the noise level
detectors are plotted in the last row, and the green line shows the noise indicator
threshold.

4.1 Automatic Labeling of the Data

After gathering all the raw, unlabeled data from the mission log files, we consider
the data as a set of multi-dimensional (multi-sensor) time series. The task is to
assign a label, one of the five possible maneuvers (tracking, climbing, avoiding,
unsteady, and surfaced), to each timestamp, taking into account the data at the
current timestamp and the data series measured before the current timestamp.

The unsteady state should be triggered when the data is too noisy so that
we can make no reliable decision. For a given timestamp, we define its noise
level as the standard deviation of the first-order discrete difference (i.e., of the
absolute values of the differences between the successive sensor values) over the
considered time window up to the current timestamp (with the same size as the
input for the neural network). We label those timestamps as unsteady, whose
noise level exceeds a certain noise indicator threshold value, as illustrated in the
bottom two subplots of Fig. 5.

The climbing state is triggered using a noise gate with three parameters: an
initial value i, a release time r, and an attack time a with r ≤ i ≤ a. We initialize
a counter with the initial value i and update it iteratively for each timestamp in
chronological order as follows: In case the rule-based controller would choose the
climbing state, then (i) if the counter value equals the release time, then we set
it to the initial value and (ii) if the counter value is below the attack time then
we increase it by one. Otherwise, if the rule-based controller would not choose
the climbing state, then (i) if the counter value equals the attack time, then
we set it to the initial value, and (ii) if the counter value is above the release
time, then we decrease it by one. After these calculations, we label the data at



454 L. Antal et al.

Table 1. The parameter settings for the state triggers (first four rows) and the noise
detectors (last two rows).

Measured sensor type Triggered state Threshold value Attack time Release time

Echo sounder climbing 15m 20 10

Echo sounder avoiding 8m 20 5

DVL-filtered avoiding 1.2 m 5 10

Depth sensor surfaced 0.5 m 5 5

Echo sounder unsteady 5.75 – –

DVL-filtered unsteady 0.80 – –

the current timestamp with the command climbing if the attack time has been
reached at least once and the release time has not been reached after the last
such occurrence. With the three parameters, we are able to tune the sensitivity
of the trigger to enter and exit the climbing state.

Labeling with the avoiding and surfaced states is analogous to climbing. The
trigger for the surfaced state is not plotted in Fig. 5 because it is not interesting
for this mission, in which surfacing does not happen. Nonetheless, it would be
computed in a very similar way as the climbing and avoiding triggers.

Lastly, the tracking is the selected label in case there are no other assigned
labels. The analysis of the automatic labeling method for a subset of the possible
labels is shown in Fig. 5. In case a timestamp gets multiple labels, we consider
the following priority: unsteady > surfaced > avoiding > (tracking |climbing).

5 Experimental Results and Their Evaluation

In this section, we first present the hyperparameter values/settings used to do
the experiments, before we report on the experimental results and analyze them.

For the automatic labeling process, we summarize the state trigger’s parame-
ter values and the noise detector’s threshold values in Table 1. Their values were
empirically determined.

We applied the labeling using the listed parameter values, with a sliding
window size of 300 timestamps corresponding to a 1-minute timespan considering
the usual 5 Hz sampling rate. The size is the same as the input size of the LSTM,
and the reason we chose it is that the window size needs to be the smallest
possible, for which a label could be assigned unambiguously. Since accurate data
should safely determine the actual label, only the noise could cause mislabeling.
The window size of 300 is enough because it is very unlikely that a time window
would contain this amount of false or noisy data. The result of the labeling
process is illustrated in Fig. 6.

For the neural network training, we used 17 log files as training and validation
data, achieving a validation accuracy of 98.93%. We tested the model with the
remaining 13 mission files, achieving an average accuracy of 97.35%. The high
accuracy of the model indicates that it learned well to give the same results as



Collision Avoidance Using LSTMs 455

Fig. 6. The result of the automatic labeling process. Two sensor measurements are
plotted, and each data point has the color of the corresponding state.

the automatic labeling method. The advantage of using a neural network is that
it can learn the data from multiple differently parametrized labeling processes
so that the neural network can learn to generalize the predictions for different
AUVs or environments. We train the model using ten epochs with a batch size
of 64. For the structure of the neural network, there is a wide range of choices.
We used the following parameter values, but mention that experimenting with
different architectures could further improve the performance:

– Convolutional layer (1D): 32 filters, kernel size of 3, ReLU activation function
– Max-pooling layer (1D): pool size of 2
– LSTM layer: 256 LSTM cells
– Fully-connected layer: 5 units, softmax activation function

After training, the model was tested in a simulated environment using Dune
and Neptus. In order to run the simulator realistically, it needs the bathymetry
measurements. Unfortunately, we had only a small region of Porto’s harbor’s
bathymetry mapped in the simulator, so we conducted one test survey using
this mapped region. During the mission, the AUV has to climb on a wall twice.

We show the comparison of the original rule-based control and the neural
network control in Fig. 7. The green rectangles (solid) show when the neural
network controller sends control maneuvers to avoid the wall. The red rectangles
show the timestamps where the rule-base controller avoids the wall; the green
dashed rectangles are shown just for comparison. It is observable that using the
neural network controller, the AUV starts climbing on the wall, passes it earlier,
and finishes the entire mission sooner than the rule-based control. It is worth
mentioning that the AUV has a limit of 15◦ for the maximum pitch, which means
that if a wall is steeper than 15◦, then the AUV will not be able to avoid the
wall only using the climbing maneuver. In this particular scenario, the avoiding
state will be triggered.



456 L. Antal et al.

Fig. 7. Comparison of the neural network and the original rule-based control method.

6 Conclusion and Future Work

In this paper we proposed a pipeline to train a neural network that manages
obstacle avoidance. The pipeline consists of multiple steps. First, we gathered
the sensor data from multiple log files recorded during different missions. In order
to use the raw data for training a model, we presented an automatic labeling
method. With the labeling method, we assign a state (one of the five possible
maneuvers) to each timestamp of the set of time-series data. Finally, using the
labeled data, we trained a Long Short-Term Memory network and tested it in
a simulator environment. In Sect. 5, we show the parameters and settings used
to do the experiments. Regarding the future, our plan is first to extend the
simulator’s bathymetry map such that we can execute more simulated tests.
Furthermore, we intend to deploy and test the neural network on a real AUV.
If needed, we will use more training data and fine-tune the model’s parameters.
With the neural network controller, we aim to increase the efficiency of the
bottom-tracking algorithm. The efficiency can be defined multiple ways, however,
our desire is the following:

– We want to reduce the overall mission time with more efficient wall climbing.
– Also, we would like to keep a constant altitude whenever possible, such that

the collected data will have better quality.
– Finally, using the LSTM, we would like to investigate the problem of predict-

ing the presence of a wall close to the AUV but not observable by the sensor
measurements yet.

Acknowledgements. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lodowska-Curie
grant agreement No. 956200. For more info, please visit https://remaro.eu.

https://remaro.eu


Collision Avoidance Using LSTMs 457

References

1. Alexandre, S., et al.: Lauv: The man-portable autonomous underwater vehicle. In:
IFAC Proceedings (2012)

2. Aubard, M., Madureira, A., Madureira, L., Pinto, J.: Real-time automatic wall
detection and localization based on side scan sonar images. In: IEEE (2022)

3. Calado, P., et al.: Obstacle avoidance using echo sounder sonar. In: OCEANS 2011
IEEE-Spain, pp. 1–6. IEEE (2011)

4. Healey, A.J.: Obstacle avoidance while bottom following for the Remus autonomous
underwater vehicle. IFAC Proceedings Volumes 37(8), 251–256 (2004)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Jordan, M.I.: Serial order: a parallel distributed processing approach. In: Advances
in psychology, vol. 121, pp. 471–495. Elsevier (1997)

7. Madureira, L., et al.: The light autonomous underwater vehicle: evolutions and
networking. In: 2013 MTS/IEEE OCEANS-Bergen. pp. 1–6. IEEE (2013)

8. Nayak, N., Nara, M., Gambin, T., Wood, Z., Clark, C.M.: Machine learning tech-
niques for AUV side-scan sonar data feature extraction as applied to intelligent
search for underwater archaeological sites. In: Field and Service Robotics (2021)

9. Neves, G., Ruiz, M., Fontinele, J., Oliveira, L.: Rotated object detection with
forward-looking sonar in underwater applications. Expert Syst. Appl. 140, 112870
(2020)

10. Pinto, J., Dias, P.S., Martins, R., Fortuna, J., Marques, E., Sousa, J.: The LSTS
toolchain for networked vehicle systems. In: 2013 MTS/IEEE OCEANS-Bergen,
pp. 1–9. IEEE (2013)

11. Saksvik, I.B., Alcocer, A., Hassani, V.: A deep learning approach to dead-reckoning
navigation for autonomous underwater vehicles with limited sensor payloads. In:
OCEANS 2021: San Diego–Porto. pp. 1–9. IEEE (2021)

12. Samaras, S., et al.: Deep learning on multi sensor data for counter UAV
applications-a systematic review. Sensors 19(22), 4837 (2019)

13. Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-
term memory (LSTM) network. Physica D: Nonlinear Phenomena, p. 132306
(2020)

14. Topini, E., et al.: LSTM-based dead reckoning navigation for autonomous under-
water vehicles. In: Global Oceans 2020: Singapore–US Gulf Coast. pp. 1–7. IEEE
(2020)

15. Yan, Z., Li, J., Jiang, A., Wang, L.: An obstacle avoidance algorithm for AUV
based on obstacle’s detected outline. In: 2018 37th Chinese Control Conference
(CCC), pp. 5257–5262. IEEE (2018)

16. Zhang, X., He, B., Li, G., Mu, X., Zhou, Y., Mang, T.: Navnet: AUV navigation
through deep sequential learning. IEEE Access 8, 59845–59861 (2020)


	A Collision Avoidance Method for Autonomous Underwater Vehicles Based on Long Short-Term Memories
	1 Introduction
	2 Related Work
	3 Rule-based Control
	4 AI-based Control
	4.1 Automatic Labeling of the Data

	5 Experimental Results and Their Evaluation
	6 Conclusion and Future Work
	References




